Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.805
Filtrar
1.
J Xray Sci Technol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38728198

RESUMEN

BACKGROUND: Accurate volumetric segmentation of primary central nervous system lymphoma (PCNSL) is essential for assessing and monitoring the tumor before radiotherapy and the treatment planning. The tedious manual segmentation leads to interindividual and intraindividual differences, while existing automatic segmentation methods cause under-segmentation of PCNSL due to the complex and multifaceted nature of the tumor. OBJECTIVE: To address the challenges of small size, diffused distribution, poor inter-layer continuity on the same axis, and tendency for over-segmentation in brain MRI PCNSL segmentation, we propose an improved attention module based on nnUNet for automated segmentation. METHODS: We collected 114 T1 MRI images of patients in the Huashan Hospital, Shanghai. Then randomly split the total of 114 cases into 5 distinct training and test sets for a 5-fold cross-validation. To efficiently and accurately delineate the PCNSL, we proposed an improved attention module based on nnU-Net with 3D convolutions, batch normalization, and residual attention (res-attention) to learn the tumor region information. Additionally, multi-scale dilated convolution kernels with different dilation rates were integrated to broaden the receptive field. We further used attentional feature fusion with 3D convolutions (AFF3D) to fuse the feature maps generated by multi-scale dilated convolution kernels to reduce under-segmentation. RESULTS: Compared to existing methods, our attention module improves the ability to distinguish diffuse and edge enhanced types of tumors; and the broadened receptive field captures tumor features of various scales and shapes more effectively, achieving a 0.9349 Dice Similarity Coefficient (DSC). CONCLUSIONS: Quantitative results demonstrate the effectiveness of the proposed method in segmenting the PCNSL. To our knowledge, this is the first study to introduce attention modules into deep learning for segmenting PCNSL based on brain magnetic resonance imaging (MRI), promoting the localization of PCNSL before radiotherapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38745497

RESUMEN

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

3.
Lung ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743087

RESUMEN

BACKGROUND: As a biomarker of alveolar-capillary basement membrane injury, Krebs von den Lungen-6 (KL-6) is involved in the occurrence and development of pulmonary diseases. However, the role of the KL-6 in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has yet to be elucidated. This prospective study was designed to clarify the associations of the serum KL-6 with the severity and prognosis in patients with AECOPD. METHODS: This study enrolled 199 eligible AECOPD patients. Demographic data and clinical characteristics were recorded. Follow-up was tracked to evaluate acute exacerbation and death. The serum KL-6 concentration was measured via an enzyme-linked immunosorbent assay. RESULTS: Serum KL-6 level at admission was higher in AECOPD patients than in control subjects. The serum KL-6 concentration gradually elevated with increasing severity of AECOPD. Pearson and Spearman analyses revealed that the serum KL-6 concentration was positively correlated with the severity score, monocyte count and concentrations of C-reactive protein, interleukin-6, uric acid, and lactate dehydrogenase in AECOPD patients during hospitalization. A statistical analysis of long-term follow-up data showed that elevated KL-6 level at admission was associated with longer hospital stays, an increased risk of future frequent acute exacerbations, and increased severity of exacerbation in COPD patients. CONCLUSION: Serum KL-6 level at admission is positively correlated with increased disease severity, prolonged hospital stay and increased risk of future acute exacerbations in COPD patients. There are positive dose-response associations of elevated serum KL-6 with severity and poor prognosis in COPD patients. The serum KL-6 concentration could be a novel diagnostic and prognostic biomarker in AECOPD patients.

4.
Angew Chem Int Ed Engl ; : e202402318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710653

RESUMEN

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. Here, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized via a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which would extend our understanding of DIET and open up new avenue for DIET exploration and applications.

5.
Bioresour Technol ; 401: 130740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677385

RESUMEN

Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.


Asunto(s)
Oxidación-Reducción , Bacterias/metabolismo , Bacterias/genética , Compuestos de Amonio/metabolismo , Microbiota , Familia de Multigenes , Filogenia , Proteómica/métodos , Metagenómica/métodos , Anaerobiosis , Multiómica
6.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667187

RESUMEN

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Carbapenémicos , Endodesoxirribonucleasas , beta-Lactamasas , Carbapenémicos/farmacología , beta-Lactamasas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Técnicas Biosensibles , Farmacorresistencia Bacteriana/genética
8.
Comput Biol Med ; 174: 108387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613886

RESUMEN

Accurate segmentation and lesion localization are essential for treating diseases in medical images. Despite deep learning methods enhancing segmentation, they still have limitations due to convolutional neural networks' inability to capture long-range feature dependencies. The self-attention mechanism in Transformers addresses this drawback, but high-resolution images present computational complexity. To improve the convolution and Transformer, we suggest a hierarchical hybrid multiaxial attention mechanism called H2MaT-Unet. This approach combines hierarchical post-feature data and applies the multiaxial attention mechanism to the feature interactions. This design facilitates efficient local and global interactions. Furthermore, we introduce a Spatial and Channel Reconstruction Convolution (ScConv) module to enhance feature aggregation. The paper introduces the H2MaT-UNet model which achieves 87.74% Dice in the multi-target segmentation task and 87.88% IOU in the single-target segmentation task, surpassing current popular models and accomplish a new SOTA. H2MaT-UNet synthesizes multi-scale feature information during the layering stage and utilizes a multi-axis attention mechanism to amplify global information interactions in an innovative manner. This re-search holds value for the practical application of deep learning in clinical settings. It allows healthcare providers to analyze segmented details of medical images more quickly and accurately.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos
9.
BMC Palliat Care ; 23(1): 102, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627698

RESUMEN

BACKGROUND: Advanced cancer patients with good Eastern Cooperative Oncology Group (ECOG) performance status (score 0-1) are underrepresented in current qualitative reports compared with their dying counterparts. AIM: To explore the experiences and care needs of advanced cancer patients with good ECOG. DESIGN: A qualitative phenomenological approach using semi-structured interview was employed. Data was analyzed using the Colaizzi's method. SETTING/PARTICIPANTS: Purposive sample of terminal solid cancer patients on palliative care aged 18-70 years with a 0-1 ECOG score were recruited from a tertiary general hospital. RESULTS: Sixteen participants were interviewed. Seven themes were generated from the transcripts, including experiencing no or mild symptoms; independence in self-care, decision-making, and financial capacity; prioritization of cancer growth suppression over symptom management; financial concerns; hope for prognosis and life; reluctance to discuss death and after-death arrangements; and use of complementary and alternative medicine (CAM) and religious coping. CONCLUSIONS: Advanced cancer patients with good ECOG have distinct experiences and care needs from their dying counterparts. They tend to experience no or mild symptoms, demonstrate a strong sense of independence, and prioritize cancer suppression over symptom management. Financial concerns were common and impact their care-related decision-making. Though being hopeful for their prognosis and life, many are reluctant to discuss death and after-death arrangements. Many Chinese patients use herbal medicine as a CAM modality but need improved awareness of and accessibility to treatment options. Healthcare professionals and policy-makers should recognize their unique experiences and needs when tailoring care strategies and policies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Cuidados Paliativos , Pronóstico , Autocuidado , Investigación Cualitativa
10.
Adv Sci (Weinh) ; : e2401340, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647396

RESUMEN

Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.

11.
Anal Sci ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649628

RESUMEN

Analyzing new psychoactive substances (NPSs) in forensic laboratories present a formidable challenge globally. Within illicit drug analysis, gas chromatography-mass spectrometry (GC-MS) emerges as a robust analytical tool. This study endeavors to assess and compare peak resolution in the analysis of illicit drugs, specifically focusing on 21 synthetic cathinones, encompassing 9 cathinone isomers. Varied GC-MS operating conditions, including distinct GC-MS columns and thermal gradients, were systematically employed for the simultaneous analysis of these synthetic cathinones. The study utilized HP-1 nonpolar and HP-5MS low-bleed columns to achieve optimal analyte resolution through modulation of GC-MS oven conditions. Mass spectra were meticulously recorded within a mass-to-charge (m/z) range spanning from 40 to 500 in full scan mode. The data showed that the cathinone isomers slightly differed in retention times and mass spectra. The GC oven conditions affected the peak resolution for chromatographic separation even with the same column. The peak resolution improved using a slower thermal gradient heat speed with a prolonged analysis time. Conclusively, the interplay of GC columns and thermal gradients emerged as pivotal factors impacting peak resolution in the analysis of illicit drugs. These empirical insights contribute to a nuanced understanding of peak resolution dynamics and facilitate the identification of synthetic cathinones, including their isomers, in seized materials through the judicious application of GC-MS methodologies.

12.
Abdom Radiol (NY) ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662208

RESUMEN

PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T2-weighted MR imaging (T2WI) for gastric cancer (GC). METHODS: 112 patients with GCs undergoing gastric MRI were prospectively enrolled between Aug 2022 and Dec 2022. Axial DLSB-T2WI and BLADE-T2WI of stomach were scanned with same spatial resolution. Three radiologists independently evaluated the image qualities using a 5-scale Likert scales (IQS) in terms of lesion delineation, gastric wall boundary conspicuity, and overall image quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated in measurable lesions. T staging was conducted based on the results of both sequences for GC patients with gastrectomy. Pairwise comparisons between DLSB-T2WI and BLADE-T2WI were performed using the Wilcoxon signed-rank test, paired t-test, and chi-squared test. Kendall's W, Fleiss' Kappa, and intraclass correlation coefficient values were used to determine inter-reader reliability. RESULTS: Against BLADE, DLSB reduced total acquisition time of T2WI from 495 min (mean 4:42 per patient) to 33.6 min (18 s per patient), with better overall image quality that produced 9.43-fold, 8.00-fold, and 18.31-fold IQS upgrading against BALDE, respectively, in three readers. In 69 measurable lesions, DLSB-T2WI had higher mean SNR and higher CNR than BLADE-T2WI. Among 71 patients with gastrectomy, DLSB-T2WI resulted in comparable accuracy to BLADE-T2WI in staging GCs (P > 0.05). CONCLUSIONS: DLSB-T2WI demonstrated shorter acquisition time, better image quality, and comparable staging accuracy, which could be an alternative to BLADE-T2WI for gastric cancer imaging.

13.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38561102

RESUMEN

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Animales , Ratones , Miocitos Cardíacos , Resveratrol/farmacología , Canal Aniónico 1 Dependiente del Voltaje , Isquemia , Hipoxia , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión
14.
Acta Psychiatr Scand ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616056

RESUMEN

INTRODUCTION: Despite its high lifetime prevalence rate and the elevated disability caused by posttraumatic stress disorder (PTSD), treatments exhibit modest efficacy. In consideration of the abnormal connectivity between the dorsolateral prefrontal cortex (DLPFC) and amygdala in PTSD, several randomized controlled trials (RCTs) addressing the efficacy of different noninvasive brain stimulation (NIBS) modalities for PTSD management have been undertaken. However, previous RCTs have reported inconsistent results. The current network meta-analysis (NMA) aimed to compare the efficacy and acceptability of various NIBS protocols in PTSD management. METHODS: We systematically searched ClinicalKey, Cochrane Central Register of Controlled Trials, Embase, ProQuest, PubMed, ScienceDirect, Web of Science, and ClinicalTrials.gov to identify relevant RCTs. The targeted RCTs was those comparing the efficacy of NIBS interventions, such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and transcutaneous cervical vagal nerve stimulation, in patients with PTSD. The NMA was conducted using a frequentist model. The primary outcomes were changes in the overall severity of PTSD and acceptability (to be specific, rates of dropouts for any reason). RESULTS: We identified 14 RCTs that enrolled 686 participants. The NMA demonstrated that among the investigated NIBS types, high-frequency rTMS over bilateral DLPFCs was associated with the greatest reduction in overall PTSD severity. Further, in comparison with the sham controls, excitatory stimulation over the right DLPFC with/without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms, including depression and anxiety symptoms, and overall PTSD severity. CONCLUSIONS: This NMA demonstrated that excitatory stimulation over the right DLPFC with or without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms. TRIAL REGISTRATION: PROSPERO CRD42023391562.

15.
Neuropsychiatr Dis Treat ; 20: 689-696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559771

RESUMEN

Background: To compare short-term cognitive outcomes among groups with and without neuropsychiatric symptoms (NPSs) or antipsychotic prescription and to determine which disease status or treatment modality is associated with relatively faster cognitive decline. Methods: We retrospectively analyzed a prospective cohort of patients diagnosed with dementia and mild cognitive impairment. All participants were evaluated using the Cognitive Abilities Screening Instrument (CASI) during their initial clinical assessments and at the annual follow-up. The dependent variable was annual delta CASI. Multivariate linear regression analysis was used to assess the degree of association between NPS, antipsychotic use, and cognitive decline after adjusting for confounding factors. Neuropsychiatric symptoms were examined individually to determine their predictive value for cognitive decline. Results: A total of 407 (N = 407) patients were included in the study. NPSs, rather than antipsychotic use, led to faster cognitive decline. A higher baseline NPI total score predicted a significantly faster decline in CASI scores (1-year delta CASI = -0.22, 95% CI = -0.38~ -0.05, p = 0.010). Specific items (delusions, agitation, depression, anxiety, euphoria, and apathy) in the NPS significantly increased cognitive decline. Conclusion: Certain neuropsychiatric symptoms, rather than antipsychotic use, lead to faster cognitive decline in a dementia collaborative care model. Checking for and providing appropriate interventions for NPS in people with dementia and their caregivers are highlighted.

16.
Bioengineering (Basel) ; 11(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38671799

RESUMEN

OBJECTIVES: This study aimed to establish reference values for fetal aortic isthmus blood flow velocity and associated indices during the first trimester, utilizing a novel ultrasonographic technique known as high-definition flow imaging (HDFI). Additionally, the correlation between Doppler profiles of aortic blood flow and key fetal parameters, including nuchal thickness (NT), crown-rump length (CRL), and fetal heartbeat (FHB), was investigated. METHODS: A total of 262 fetuses were included in the analysis between December 2022 and December 2023. Utilizing 2D power Doppler ultrasound images, aortic blood flow parameters were assessed, including aortic peak systolic velocity (PS), aortic end-diastolic velocity (ED), aortic time average maximal velocity (TAMV), and various indices such as aortic systolic velocity/diastolic velocity (S/D), aortic pulsatile index (PI), aortic resistance index (RI), aortic isthmus flow velocity index (IFI), and aortic isthmic systolic index (ISI). Concurrently, fetal FHB, NT, and CRL were evaluated during early trimester Down syndrome screening. RESULTS: Significant findings include a positive correlation between gestational age (GA) and PS (PS = 3.75 × (GA) - 15.4, r2 = 0.13, p < 0.01), ED (ED = 0.42 × (GA) - 0.61, r2 = 0.04, p < 0.01), PI (PI = 0.07 × (GA) + 1.03, r2 = 0.04, p < 0.01), and TAMV (TAMV = 1.23 × (GA) - 1.66, r2 = 0.08, p < 0.01). In contrast, aortic ISI demonstrated a significant decrease (ISI = -0.03 × (GA) + 0.57, r2 = 0.05, p < 0.05) with gestational age. No significant correlation was observed for aortic RI (p = 0.33), S/D (p = 0.39), and IFI (p = 0.29) with gestational age. Aortic PS exhibited positive correlations with NT (0.217, p = 0.001) and CRL (0.360, p = 0.000) but a negative correlation with FHB (-0.214, p = 0.001). Aortic PI demonstrated positive correlations with CRL (0.208, p = 0.001) and negative correlations with FHB (-0.176, p = 0.005). Aortic TAMV showed positive correlations with NT (0.233, p = 0.000) and CRL (0.290, p = 0.000) while exhibiting a negative correlation with FHB (-0.141, p = 0.026). Aortic ISI demonstrated negative correlations with NT (-0.128, p = 0.045) and CRL (-0.218, p = 0.001) but a positive correlation with FHB (0.163, p = 0.010). CONCLUSIONS: Power Doppler angiography with Doppler ultrasound demonstrates the ability to establish accurate reference values for fetal aortic blood flow during the first trimester of pregnancy. Notably, aortic PS, TAMV, and ISI exhibit significant correlations with NT, CRL, and FHB, with ISI appearing more relevant than IFI, PS, TAMV, and FHB. The utilization of HDFI technology proves advantageous in efficiently detecting the site of the aortic isthmus compared to traditional color Doppler mode in early second trimesters.

17.
Nutrients ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674796

RESUMEN

Prediabetes is characterized by abnormal glycemic levels below the type 2 diabetes threshold, and effective control of blood glucose may prevent the progression to type 2 diabetes. While the association between the gut microbiota, glucose metabolism, and insulin resistance in diabetic patients has been established in previous studies, there is a lack of research regarding these aspects in prediabetic patients in Asia. We aim to investigate the composition of the gut microbiota in prediabetic patients and their differences compared to healthy individuals. In total, 57 prediabetic patients and 60 healthy adult individuals aged 18 to 65 years old were included in this study. Biochemistry data, fecal samples, and 3 days of food records were collected. Deoxyribonucleic acid extraction and next-generation sequencing via 16S ribosomal ribonucleic acid metagenomic sequencing were conducted to analyze the relationship between the gut microbiota and dietary habits. Prediabetic patients showed a lower microbial diversity than healthy individuals, with 9 bacterial genera being less abundant and 14 others more abundant. Prediabetic patients who consumed a low-carbohydrate (LC) diet exhibited higher diversity in the gut microbiota than those who consumed a high-carbohydrate diet. A higher abundance of Coprococcus was observed in the prediabetic patients on an LC diet. Compared to healthy individuals, the gut microbiota of prediabetic patients was significantly different, and adopting an LC diet with high dietary fiber consumption may positively impact the gut microbiota. Future studies should aim to understand the relationship between the gut microbiota and glycemic control in the Asian population.


Asunto(s)
Heces , Microbioma Gastrointestinal , Estado Prediabético , Humanos , Estado Prediabético/microbiología , Persona de Mediana Edad , Adulto , Masculino , Femenino , Heces/microbiología , Anciano , Adulto Joven , Adolescente , ARN Ribosómico 16S/genética , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fibras de la Dieta/administración & dosificación
18.
Materials (Basel) ; 17(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38591609

RESUMEN

This research focuses on enhancing the efficiency of Bi2Te3-based thermoelectric generators (TEGs) in ocean thermal energy conversion (OTEC) systems through innovative heat exchanger designs. Our comparative study uses computer simulations to evaluate three types of heat exchangers: cavity, plate-fins, and longitudinal vortex generators (LVGs). We analyze their impact on thermoelectric conversion performance, considering the thermal energy transfer from warm surface seawater to TEGs. The results demonstrate that heat exchangers with plate-fins and LVGs significantly outperform the cavity heat exchanger regarding thermal energy transfer efficiency. Specifically, plate-fins increase TEG output power by approximately 22.92% and enhance thermoelectric conversion efficiency by 38.20%. Similarly, LVGs lead to a 13.02% increase in output power and a 16.83% improvement in conversion efficiency. These advancements are contingent upon specific conditions such as seawater flow rates, fin heights, LVG tilt angles, and locations. The study underscores the importance of optimizing heat exchanger designs in OTEC systems, balancing enhanced heat transfer against the required pump power. Our findings contribute to a broader understanding of materials science in sustainable energy technologies.

19.
Angew Chem Int Ed Engl ; : e202320029, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591694

RESUMEN

N1-methyladenosine (m1A) modification is one of the most prevalent epigenetic modifications on RNA. Given the vital role of m1A modification in RNA processing such as splicing, stability and translation, developing a precise and controllable m1A editing tool is pivotal for in-depth investigating the biological functions of m1A. In this study, we developed an abscisic acid (ABA)-inducible and reversible m1A demethylation tool (termed AI-dm1A), which targets specific transcripts by combining the chemical proximity-induction techniques with the CRISPR/dCas13b system and ALKBH3. We successfully employed AI-dm1A to selectively demethylate the m1A modifications at MALAT1 A8422, and this demethylation process could be reversed by removing ABA. Furthermore, we validated its demethylating function on various types of cellular RNAs including mRNA, rRNA and lncRNA. Additionally, we used AI-dm1A to specifically demethylate m1A on ATP5D mRNA, which promoted ATP5D expression and enhanced the glycolysis activity of tumor cells. Conversely, by replacing the demethylase ALKBH3 with methyltransferase TRMT61A, we also developed a controllable m1A methylation tool, namely AI-m1A. Finally, we caged ABA by 4,5-dimethoxy-2-nitrobenzyl (DMNB) to achieve light-inducible m1A methylation or demethylation on specific transcripts. Collectively, our m1A editing tool enables us to flexibly study how m1A modifications on specific transcript influence biological functions and phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA